Generalized inferential models for censored data

Add to the Conversation


Inferential challenges that arise when data are censored have been extensively studied under the classical frameworks. In this paper, we provide an alternative generalized inferential model approach whose output is a data-dependent plausibility function. This construction is driven by an association between the distribution of the relative likelihood function at the interest parameter and an unobserved auxiliary variable. The plausibility function emerges from the distribution of a suitably calibrated random set designed to predict that unobserved auxiliary variable. The evaluation of this plausibility function requires a novel use of the classical Kaplan--Meier estimator to estimate the censoring rather than the event distribution. We prove that the proposed method provides valid inference, at least approximately, and our real- and simulated-data examples demonstrate its superior performance compared to existing methods.


➤  Version 1 (2019-11-29)


Joyce Cahoon and Ryan Martin (2019). Generalized inferential models for censored data. Researchers.One,

© 2018-2020 Researchers.One