## Remark on "What You See and What You Don't See:..."

P.J. Fitzsimmons

Department of Mathematics, U.C. San Diego

La Jolla, CA 92093-0112

pfitzsim@ucsd.edu

There is a general expression for the expected hidden tail moment that may be useful. It is this:

(1) 
$$\mathbf{E}[\mu_{K_n,p}] = \frac{\mathbf{E}[K_{n+1}^p]}{n+1}.$$

(I'm assuming that the i.i.d  $X_k$  are strictly positive and have a continuous cdf.) Indeed, for a fixed k > 0 write

$$g(k) := \int_{k}^{\infty} x^{p} F(dx) = \mathbf{E}[X_{n+1}^{p} 1_{\{X_{n+1} > k\}}].$$

Then

$$\mathbf{E}[\mu_{K_n,p}] = \mathbf{E} \left[ \int_0^\infty 1_{\{x > K_n\}} x^p F(dx) \right]$$

$$= \mathbf{E}[g(K_n)]$$

$$= \mathbf{E} \left[ X_{n+1}^p 1_{\{X_{n+1} > K_n\}} \right]$$

$$= \mathbf{E} \left[ X_{n+1}^p 1_{\{X_{n+1} = K_{n+1}\}} \right]$$

By symmetry this last expectation is equal to

$$\mathbf{E}\left[X_k^p 1_{\{X_k = K_{n+1}\}}\right], \qquad k = 1, 2, \dots, n.$$

Summing over  $k \in \{1, 2, \dots, n+1\}$  we obtain (1).

The expression (1) leads to a heuristic for the order of magnitude of  $\mathbf{E}[\mu_{K_n,p}]$ . If  $\overline{F}(x) := 1 - F(x)$  is the tail for the  $X_k$ , then  $V := \overline{F}(K_{n+1})$  has the same distribution as the minimum of a sample of n+1 uniform (0,1) random variables. As such  $K_{n+1} = \overline{F}^{-1}(V)$  is roughly  $\overline{F}^{-1}(1/(n+2))$ , and so

$$\mathbf{E}[\mu_{K_n,p}] \approx \frac{\left[\overline{F}^{-1}(1/(n+2))\right]^p}{n+1},$$

for large n, which is consistent with your expression for  $\mathbf{E}[\mu_{K_n,p}]$  in the power law case.