Remark on "What You See and What You Don't See:..."

P.J. Fitzsimmons

Department of Mathematics, U.C. San Diego
La Jolla, CA 92093-0112
pfitzsim@ucsd.edu

There is a general expression for the expected hidden tail moment that may be useful. It is this:

$$
\begin{equation*}
\mathbf{E}\left[\mu_{K_{n}, p}\right]=\frac{\mathbf{E}\left[K_{n+1}^{p}\right]}{n+1} \tag{1}
\end{equation*}
$$

(I'm assuming that the i.i.d X_{k} are strictly positive and have a continuous cdf.) Indeed, for a fixed $k>0$ write

$$
g(k):=\int_{k}^{\infty} x^{p} F(d x)=\mathbf{E}\left[X_{n+1}^{p} 1_{\left\{X_{n+1}>k\right\}}\right]
$$

Then

$$
\begin{aligned}
\mathbf{E}\left[\mu_{K_{n}, p}\right] & =\mathbf{E}\left[\int_{0}^{\infty} 1_{\left\{x>K_{n}\right\}} x^{p} F(d x)\right] \\
& =\mathbf{E}\left[g\left(K_{n}\right)\right] \\
& =\mathbf{E}\left[X_{n+1}^{p} 1_{\left\{X_{n+1}>K_{n}\right\}}\right] \\
& =\mathbf{E}\left[X_{n+1}^{p} 1_{\left\{X_{n+1}=K_{n+1}\right\}}\right]
\end{aligned}
$$

By symmetry this last expectation is equal to

$$
\mathbf{E}\left[X_{k}^{p} 1_{\left\{X_{k}=K_{n+1}\right\}}\right], \quad k=1,2, \ldots, n
$$

Summing over $k \in\{1,2, \ldots, n+1\}$ we obtain (1).
The expression (1) leads to a heuristic for the order of magnitude of $\mathbf{E}\left[\mu_{K_{n}, p}\right]$. If $\bar{F}(x):=$ $1-F(x)$ is the tail for the X_{k}, then $V:=\bar{F}\left(K_{n+1}\right)$ has the same distribution as the minimum of a sample of $n+1$ uniform $(0,1)$ random variables. As such $K_{n+1}=\bar{F}^{-1}(V)$ is roughly $\bar{F}^{-1}(1 /(n+2))$, and so

$$
\mathbf{E}\left[\mu_{K_{n}, p}\right] \approx \frac{\left[\bar{F}^{-1}(1 /(n+2))\right]^{p}}{n+1}
$$

for large n, which is consistent with your expression for $\mathbf{E}\left[\mu_{K_{n}, p}\right]$ in the power law case.

