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1 Non-additive beliefs are inaccurate

A different way to conceive of the reliable formation of beliefs in propositions — in this case,
propositions like {6 € A} —is as the estimation of their truth-values. This is the point of view taken
in the literature on probabilistic forecasting, where a forecaster’s performance is often measured by
their (empirial) Brier score, which is just the mean squared-error of the probabilities they assigned
to past events with respect to the indicators of whether those events actually happened; see e.g.
the work of Tetlock and colleagues (Mellers et al., 2015). It is the approach to justifying degrees
of belief taken by many contemporary philosophers (Joyce, 2009; Pettigrew, 2016). And it is an
applicatiion of the statistical principle that an estimator should be close, on average, to the true
parameter — only here the “parameter” in question is just the truth-value of the hypothesis about
which we are forming degrees of belief.

Call a generic proposition ¢; then, its truth value is 1(¢). On the accurate-estimation view,
degrees of belief in ¢ based on data Y — written ¢(Y) — are justified if they are close (in some
sense) on average (with respect to Y) to 1(q).

Non-additive beliefs are, in this sense, unreliable. We consider degrees of belief ¢ = [Cl} in
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belief that not-q. @ € {e1, ea} where e, e are standard basis vectors. Then, define the Brier score
as the squared error of ¢ as an estimator of Q:

pairs of propositions @ = [ }, i.e. ¢ is the degree of belief that ¢ and cs is the degree of

Brier(c,Q) £ [lc— Q.

The following theorem says that degrees of belief b which are mot probability distributions are
Brier-dominated by a probability distribution.

Theorem 1. Let Proja be the projector onto the probability simplex A in R2. Then for all
c € R? and for Q € {e1,ea}, where {eq, e} are standard basis vectors in R? (representing worlds
where ¢ is true and false, respectively), Brier(Projab, Q) < Brier(b, Q).

(Theorem 1 is a (constructive) special case of Joyce (1998)’s result that non-probabilistic degrees
of belief are dominated by probabilistic ones in loss functions with certain desirable properties.)

This means that data-dependent degrees of belief over Q which are not probability distributions
are not only inadmissible as estimators of (), but are dominated everywhere by their projection
onto A.

Corollary 1.1. Let ¢(Y) be a function mapping data Y to degrees of belief, with P(¢(Y) ¢ A) = 1.
Then, for Q € {e1, ea}, Brier(Projac(Y), Q) < Brier(c(Y), Q) almost surely.

Returning to the case of forming beliefs about parameters in particular, this means that for
a hypothesis of interest H = {# € A} and a non-additive belief-forming procedure ¢(Y) =
Bely (0 € A)
|:B€ly (9 ¢ A)
which are at least as close to the truth-value of H as ¢(Y).
This is, of course, not a statement about degrees of belief over all of © (e.g. functions on the
Borel o-algebra on ©), but only targeted hypotheses. Nevertheless this seems to be the setting

] , the additive belief-forming procedure Projac(Y') will always yield degrees of belief



implicit in Martin’s discussion, and so the inaccuracy of belief functions with respect to such
hypotheses seems relevant to evaluating his approach. I talk about this more in Section 2.

In any case, one is free to reject this competing notion of reliability. I only mean to point
out that there are multiple senses in which a belief-forming procedure may systematically lead
to error (relative to alternatives), and that non-additive degrees of belief are unreliable on one
plausible account. I would be excited to see those interested in the foundations of statistics give
more thorough consideration to exactly what sort of reliability we want from our methods.

2 Individual hypotheses versus beliefs over all of ©

Martin motivates his rejection of additive degrees of belief with the false confidence theorem, which
says that additive degrees of belief are miscalibrated for some hypotheses. One might respond that
in the “inference” setting we are only interested in a few hypotheses of interest, and so that it
should be enough that we avoid false confidence for those hypotheses. Martin acknowledges this,
but says that “at the meta level where data scientists are developing methods and corresponding
software to be used by others across applications, this strong control on performance is necessary”.

As far as I can tell this does not really answer the objection, because it does not address the
possibility that we use methods which are reliable given a fixed (but arbitrarily chosen) hypothesis.
This would allow for the development of generic, reliable methods which do not require anticipating
problematic hypotheses. Indeed, as Martin discusses later, we already have a candidate for such a
methodology in frequentist hypothesis testing, which does not involve forming beliefs (additive or
otherwise) over the whole parameter space. Another approach is to identify procedures which, for
fixed hypotheses H = {6 € A}, return accurate degrees of belief — in the sense of Section 1 — in
(H,not-H).

3 Continuous estimation and decision-making

A final concern I have on the general approach is that, as with frequentist hypothesis testing, it does
not seem to lead to a satisfying account of continuous parameter estimation (as opposed to forming
beliefs about coarse partitions of parameter space) or, as a consequence, decision-making based
on a statistical analysis. Given a probability distribution over the decision-relevant observables
Y (whether it be a posterior predictive distribution or otherwise), it is clear — if I accept that
probability distribution as “justified” in some sense, and I accept the principle of maximizing
expected utility — how to make predictions and decisions, at least in principle. Martin, of course,
denies that any such probability distribution can be justified (because of false confidence), but it is
not clear what the alternative should be in situations where one needs to quantify their uncertainty
over Y “simultaneously”. It does seem that there have been several attempts to develop a decision
theory for belief functions (Denoeux, 2018), but none seems to have emerged as a real competitor
to expected utility theory.

4 Proof of theorem 1

Proof. Take ¢ € R? and Q € {e1,e2}. Proja is a projector onto a convex set, and therefore a strict
quasi-nonexpansion. And, ) € A and therefore @ is a fixed point of Proja. So, by the definition

of strict quasi-nonexpansiveness, Brier(Projac, Q) = ||[Projac — Q|? < |lc — Q||? = Brier(c, Q).
(See Bauschke et al. (2011) for the results on quasi-nonexpansions.) O
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