Mark Kirstein

Mark Kirstein

MPI for Mathematics in the Sciences


Articles

This version of my PhD thesis has been produced for the open access open peer review platform <researchers.one>. I am interested in reviewer feedback. Please feel free to upload your reviews, (dis)agreements, typos, errors, etc. directly to <researchers.one> or email me. Compared to the original submission this version contains only minor corrections with regard to e.g. typos, misplaced citations and some resolved ordering issues in the bibliography.

Behavioural economics provides labels for patterns in human economic behaviour. Probability weighting is one such label. It expresses a mismatch between probabilities used in a formal model of a decision (i.e. model parameters) and probabilities inferred from real people's decisions (the same parameters estimated empirically). The inferred probabilities are called ``decision weights.'' It is considered a robust experimental finding that decision weights are higher than probabilities for rare events, and (necessarily, through normalisation) lower than probabilities for common events. Typically this is presented as a cognitive bias, i.e. an error of judgement by the person. Here we point out that the same observation can be described differently: broadly speaking, probability weighting means that a decision maker has greater uncertainty about the world than the observer. We offer a plausible mechanism whereby such differences in uncertainty arise naturally: when a decision maker must estimate probabilities as frequencies in a time series while the observer knows them a priori. This suggests an alternative presentation of probability weighting as a principled response by a decision maker to uncertainties unaccounted for in an observer's model.

An important but understudied question in economics is how people choose when facing uncertainty in the timing of events. Here we study preferences over time lotteries, in which the payment amount is certain but the payment time is uncertain. Expected discounted utility theory (EDUT) predicts decision makers to be risk-seeking over time lotteries. We explore a normative model of growth-optimality, in which decision makers maximise the long-term growth rate of their wealth. Revisiting experimental evidence on time lotteries, we find that growth-optimality accords better with the evidence than EDUT. We outline future experiments to scrutinise further the plausibility of growth-optimality.

Conferences

No conferences here!

You haven't subscribed to any conferences yet.

© 2018–2025 Researchers.One