Min Xu

Min Xu

Rutgers University


Articles

We introduce the PAPER (Preferential Attachment Plus Erdos--Renyi) model for random networks, where we let a random network G be the union of a preferential attachment (PA) tree T and additional Erdos--Renyi (ER) random edges. The PA tree component captures the fact that real world networks often have an underlying growth/recruitment process where vertices and edges are added sequentially, while the ER component can be regarded as random noise. Given only a single snapshot of the final network G, we study the problem of constructing confidence sets for the early history, in particular the root node, of the unobserved growth process; the root node can be patient zero in a disease infection network or the source of fake news in a social media network. We propose an inference algorithm based on Gibbs sampling that scales to networks with millions of nodes and provide theoretical analysis showing that the expected size of the confidence set is small so long as the noise level of the ER edges is not too large. We also propose variations of the model in which multiple growth processes occur simultaneously, reflecting the growth of multiple communities, and we use these models to provide a new approach to community detection.

The spread of infectious disease in a human community or the proliferation of fake news on social media can be modeled as a randomly growing tree-shaped graph. The history of the random growth process is often unobserved but contains important information such as thesource of the infection. We consider the problem of statistical inference on aspects of the latent history using only a single snapshot of the final tree. Our approach is to apply random labels to the observed unlabeled tree and analyze the resulting distribution of the growth process, conditional on the final outcome. We show that this conditional distribution is tractable under a shape-exchangeability condition, which we introduce here, and that this condition is satisfied for many popular models for randomly growing trees such as uniform attachment, linear preferential attachment and uniform attachment on a D-regular tree. For inference of the rootunder shape-exchangeability, we propose computationally scalable algorithms for constructing confidence sets with valid frequentist coverage as well as bounds on the expected size of the confidence sets. We also provide efficient sampling algorithms which extend our methods to a wide class of inference problems.

Conferences

No conferences here!

You haven't subscribed to any conferences yet.

© 2018–2025 Researchers.One